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Confinement as a Determinant of Macromolecular Structure and Reactivity.
Il. Effects of Weakly Attractive Interactions between Confined
Macrosolutes and Confining Structures

Allen P. Minton

Section on Physical Biochemistry, Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA

ABSTRACT The effect of weak, nonspecific interaction between molecules confined within restricted elements of volume
(“pores”) and the boundary surfaces of the pore, upon the reactivity and physical state of the confined molecules, is explored
by means of simple models. A confined molecule is represented by a rectangular parallelopiped having one of six orientations
aligned with the cartesian coordinate axes, and the confining volume element is represented by a pair of parallel surfaces (planar
pore), a tube of square cross section (square pore), or a cubical box (cubical pore). Weak interactions are modeled by square-well
potentials having a defined range and well depth. Partition coefficients for distribution of molecules between the bulk and confined
phase are calculated using an extension of the statistical-thermodynamic theory of Giddings et al. (1968). It is calculated that
surface attraction with a potential of only a few kcal/mol monomer may result in large increases in the extent of self- or
heteroassociation of confined molecules (as much as several orders of magnitude in favorable cases) linked to adsorption of
the oligomeric species onto boundary surfaces. Calculations are also presented suggesting that surface attraction can lead to
deformation of the native structure of adsorbed macromolecules. It is suggested that these findings are relevant to an under-

standing of the structure of eukaryotic cytoplasm.

INTRODUCTION

Electron micrographic studies have revealed that the cyto-
plasm of many types of eukaryotic cells is not a fluid con-
tinuum, but rather a two-phase, gel-like medium consisting
of an aqueous fluid phase sequestered within a matrix of
fibrous supramolecular structures including F-actin, micro-
tubules, and intermediate filaments (Porter, 1984; Hirokawa,
1991). Depending upon the particular location within the
cell, the fibers comprising the matrix may be preferentially
oriented along a particular axis or may be randomly oriented.
Macromolecular solutes within the aqueous phase thus are
confined to elements of volume that may be described as
pores, interstices, or channels between bounding elements of
the fiber matrix. Electron micrographs indicate that pore di-
mensions are of the order of tens of nanometers, i.e., some-
what larger than individual protein molecules, but in the
range of sizes expected of oligomeric aggregates of proteins.
As the size of a confined macromolecule (or macromolecular
aggregate) approaches the size of the confining volume el-
ement, considerations of volume exclusion dictate that the
configurational entropy of the confined particle will be sig-
nificantly reduced and its chemical potential correspondingly
increased relative to the unbounded or bulk phase. In the
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previous paper of this series (Minton (1992), referred to
hereafter as Part I), the effect of volume exclusion due to
confinement upon a variety of hypothetical reactions tak-
ing place in model pores was explored, and it was con-
cluded that confinement alone can profoundly influence
reaction equilibria under conditions that might be realized
in vivo.

A recent study (Lakatos and Minton, 1990) revealed that
several proteins exhibit a tendency to form weak, nonspecific
complexes with F-actin under conditions of moderate ionic
strength. These weak complexes are characterized by stand-
ard free energies of formation of only a few RT per mole.
Other proteins weakly self-associate under similar conditions
at sufficiently high concentration (Muramatsu and Minton,
1989). Moreover, non-cross-linked collagen fibrils exhibit a
spontaneous tendency to align in bundles, indicating the
presence of a weakly attractive interaction between the col-
lagen molecules in adjacent fibrils in solutions of moderate
ionic strength (Leiken et al., 1994). Although the number of
demonstrated examples is limited, the dissimilarity of pro-
teins exhibiting such behavior is sufficiently great that we
believe that the ability to participate in the formation of weak,
nonspecific, and possibly transient complexes under quasi-
physiological conditions may be a property of many, if not
most, proteins.

In the present work, we investigate the influence of weakly
attractive interactions between a confined particle (represent-
ing a globular protein) and the confining boundary on the
equilibrium properties of the confined particle. It is shown
that rather weak attractive interactions may profoundly
influence the reactivity and conformation of confined
molecules.
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DESCRIPTION OF MODEL AND CALCULATIONS

As in Part I, the effect of confinement and interaction upon
the equilibrium constant for a specified reaction is calculated
according to

= Kpore/Kbulk — H K;li

products

Ik,
reactants
where K™ and K®* are the equilibrium constants of the
reaction in the pore (bounded) and bulk (unbounded)
phases, respectively, K; is the equilibrium coefficient for
partition of the ith species between the bulk and pore
phases (= cP/c?¥), and n, is the stoichiometric coeffi-
cient of the ith species in the specified reaction.

Equilibrium partition coefficients are calculated according
to (Giddings et al., 1968):

ct _ [J exp[—Ui(d, r)/kgT] dop dr
cbulk - J’f dd’ dr > (2)

1

where ¢ and ¢ denote the concentrations of the ith spe-
cies in the pore and bulk phases respectively, U (¢, r) de-
notes the potential energy of interaction between a particle
of the ith species and the confining boundaries as a function
of the orientational and positional coordinates of the particle,
denoted by ¢ and r, respectively, kg is Boltzmann’s constant,
and T is the absolute temperature.

For the purpose of the present investigation, a bounded
volume element is modeled by a rectangular parallel-
opiped (PP) with sides of length 2r,,, 2r, , and 2r,,, cen-
tered at the origin of a set of Cartesian coordinates. The
pore is thus bounded by planes parallel to the yz axis at
+r,,and —r,,, by planes parallel to the xz axis at +r, and
—r,y> and by planes parallel to the xy axis at +r,, and —r,,.
A confined particle is modeled by a rectangular PP with
sides of length 2r,, 2r,, and 2r_. Because of the nature of
the model interactions to be introduced, the particle is
restricted to the six orientations in which the sides of the
PP are parallel or perpendicular to the Cartesian coordi-
nate axes. Thus, the generalized orientational coordinate
¢ reduces to a set of six discrete orientations, and Eq. 2
reduces to

KiE

> exp[—U;(¢;, r)/kgT] dr
K, == ; €)

6fdr

where U;(¢;, r) denotes the potential of a particle of the
ith species at position r in the jth orientation. A specific
point in configurational space will be denoted as follows.
Let the particle be situated such that its center of mass lies
at the point (r,, Iy r,), with the i axis in the x direction,
the j axis in the y direction, and the k axis in the z di-
rection, where the indices i, j, and k represent permuta-
tions of a, b, and c. This configuration is denoted by

{re 1y 1 s s Kk}
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CALCULATION OF THE POTENTIAL ENERGY
OF A CONFIGURATION

In Part I, interactions between the confined particle and the
confining boundary were assumed to be of the hard particle
type, i.e., for a given set of positional and orientational co-
ordinates, if a particle falls entirely within the confined re-
gion, the potential is O, otherwise infinite. In the present
work, interactions between a confined particle and the con-
fining boundary are modeled by a set of square-well poten-
tials defined by the distance between each face of the con-
fined particle and the planar boundary that it opposes.

The potential energy of the configuration {r,, r,, r,, i, j, k},
denoted by U(r,, r,, 1, i, j, k), is given by the sum of potential
energies associated with each face of the confined PP and the
corresponding boundary. There are six such contributions,
but we shall pair within a single term interactions associated
with the two opposite faces of the confined PP normal to a
given axial direction, leading to a decomposition of the total
potential into three terms associated with each of the coor-
dinate axes:

U(rxa ry’ rz9 i,ja k) = Ul(rx, i) + Ul(ryaj) + Ul(rza k)' (4)

Let m represent one of the three axial directions (x, y, or z);
r,, denotes the m coordinate of the center of the confined PP.
Let ¢ represent the axis of the confined PP parallel to the m
axis of the pore (i.e., t = i, j, or k); 2r, equals the length of
the confined PP in the direction of the m axis. Finally, let u
and v represent the other two edges perpendicular to the m
axis; the two {uv} faces of the confined PP are normal to the
m axis. Then U (r,, t) represents a “one-dimensional” con-
tribution to the total potential energy, arising from interac-
tions of the {uv} faces of the confined particle with the two
boundaries normal to the m axis.

U, is evaluated as follows. Let d represent the “range” of
the square-well interaction, such that if a face of the confined
particle lies within a distance d of the confining boundary,
an energy of interaction proportional to the area of the
particle face must be taken into account in calculating the
total potential energy. Depending upon the relative mag-
nitudes of r,, Tom» and d, four possible cases, illustrated in
Fig. 1, ensue:

Casel: r = (r,, — d). Depending upon the value of r,,

neither or one of the two {uv} faces of the particle may
interact with a boundary surface.

0 O0=r,<(ryy—r,—d)
W, ks T (rpm —

o rmZ(rpm_rt)

Uy(ry, t) = rt—d)srm<(rpm—rt)

®)

where W, is an interaction energy proportional to the area
of the {uv} face of the PP, i.e. W, = W~ r, - r,, where
W is a constant of proportionality.

CaseII: (r,, — d) <r = (r,, — d/2). Depending upon
the value of r,, one or both {uv} faces of the particle may
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interact with boundary surfaces.

2W, kT O0=r,<(r,— Tom + d)
WokeT — (ry,—rpy + d)=r,<(rpy— r,)
® T Z (Fpm — 1)

Uy (r» =

©)
Case III: (1, — d/2) < r, = r,,. Both {uv} faces interact
with the boundaries.

W kgT 0 =r,<(ry, — r)

Uy(rm, 1) = {w 0]

T = (rpm - t)
CaseIV: r.>r,,. Both {uv} faces intersect the boundaries.

Uy(ry, 1) = @®

CALCULATION OF THE PARTITION COEFFICIENT
Equation 3 may be expanded as

L(a, b, c) + Li(a, ¢, b) + Li(b, a, c)

K = + Li(b, ¢, a) + Li(c, a, b) + L(c, b, a) S
6 ToxToyTpz

CASE | | o
Lo
Il ,
III |
13%
——- -

FIGURE 1 Schematic illustration of possible cases for interactions in one
dimension. The ends of the horizontal lines represent the positions of the
{uv} faces of the confined parallelopiped relative to the boundaries of the
pore, defined as planes normal to the m axis at *r,,. The several horizontal
lines drawn for a particular case represent subcases described in Egs. 5-7.
If the end of the line lies between the center of the pore and the two dotted
lines lying at a distance d from the boundary, no interaction between that
face and the boundary exists. If the end of the line lies between the dotted
line and the pore boundary, an interaction with the potential specified in the
text exists. If the end of the line lies outside of the pore boundary, then an
interaction having infinite potential (i.e., a “forbidden” configuration) exists.
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where

Ulres 1ys 1,5 65 ), )
LG, j, k)= | dr, | dr, | dr,exp| — e —
B

The species index i has been dropped from the right-hand side
of Eq. 9 to eliminate confusion with the dummy index i ap-
pearing in the subsequent definition of 7,. However, it should be
clear that the arguments a, b, and ¢ on the right-hand side of Eq.
9 refer specifically to orientations and dimensions of the con-
fined particle of species i. It follows from Eq. 4 that

I3(i9j9 k) = Il(x5 l) X Il(y,]) X I](Z, k), (loa)
where
- l(rm’ t)
Il(m, nH= f drm exp[— T] (].Ob)
0 B

For each of the four geometric possibilities delineated above, the
following results are derived from Eqgs. 5-8 and 10b.

Case I

1L(m, 1) = 1y, — 1, + dlexp(=W,,) — 1] (1n
Case II:
= exp(— -r_+
I,(m, ) = exp(—=2W,, )(r, — 1, + d) 12)
+ exp(— Wy (27, — 2r,— d)
Case III:
I,(m, t) = exp(—=2W,, )(rpn — 11) (13)
Case IV:
I(m)=0 (14)
CALCULATION OF PARTITION COEFFICIENTS FOR
SPECIFIC PORE MODELS
Planar pore model (r,,, r,, = «)

It follows from the definitions of I,(m, t) and I,(i, j, k) given
in Eqgs. 10 and 9 above that

IL(m,t
Lim 200 _ 4 (15)
Fpm—>® rpm
and
L(i,j, k) IL(x,i
Lig B&L0 L) (16)
Tpy,Tpz—>® rerP)’rPZ rPX
Thus, for the planar pore model, Eq. 9 reduces to
IL(x,a) + I,(x,b) + I(x, c
K - h®a +heb) +hee) )

3rpx

Square pore model (r,, = =, r,, =

Because r,, = r,,,
10 and 15 that

oy)
I(x,t) = I,(y, t), and it follows from Egs.

Ii(a,b,c) IL(a,b)

2 ’
ToxTpy Tz T

Lim

rpz—>®

(18)



1314 Biophysical Journal

where I(a, b) = I,(x, a) - I (x, b). Then Eq. 9 reduces to

L(a, b) + L(a, c) + L,(b, c)

2
3rpx

K =

(19)

Cubical pore model (r,, = r,, = r,.)

It follows from the equality of all pore dimensions that

Lix,t) =1L, 1) =1(z1)

and

L, jk) = L(x, i) - I,(x, y) - I (x, 2) = L{i, j, kD),
i.e., the value of I, is independent of the ordering of the

arguments i, j, and k. Hence, Eq. 9 reduces to

= 13((1;31), C). (20)

px
The planar, square, and cubical pore models are illustrated
in Fig. 2 a—c, respectively, of Part I.

RESULTS AND DISCUSSION
Macromolecular self-association
Consider the reaction nA = A, with an equilibrium constant
in the bulk (unconfined) phase
Kbulk = Cbulk/(cli:ulk)n
and an equilibrium constant in the pore (confined volume
element)
Kﬁol’e = CEOTC/(cfl)Ofc)n
For this reaction, Eq. 1 reduces to

K K,
= W = f(—'; . (21)

In the present model, monomer was represented as a
cube with edges of halflength (pseudo-radius) r, and vol-

ume V; = 8r3. An n-mer was represented by three dif-
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ferently shaped particles, all with V, = nV,. The “com-
pact” n-mer was represented by a cube with edges of
halflength r, = n'?r; the “rod-like” n-mer was repre-
sented by a PP with edges of halflength r,, |, nr; and the
“plate-like” n-mer was represented by a PP with edges of
halflength r,, n*?r,, n'?r,.

Hard particle interactions

Initial calculations of the effect of confinement upon I" were
carried out in the hard particle approximation (W, = 0) to
assess the effect of discretizing orientational configurations,
and to establish a reference for comparison with interacting
systems. In Fig. 2 A the calculated value of log I in a planar
pore is plotted as the ratio of r,:r,,, for several values of n and
for the three differently shaped n-mers described above.
These results may be compared with earlier results presented
in Part I, replotted in Fig. 2 B, which were obtained by mod-
eling the monomer as a sphere and the n-mer as a larger
sphere, a spherocylinder, or a torocylinder, with all possible
orientations taken into account. It may be seen that despite
the many differences in detail between the two models, the
results agree qualitatively, and in some cases semiquantita-
tively, for r,/r, ~< 0.6, indicating that under these condi-
tions (1) discretization of orientations does not qualitatively
perturb the orientational contribution to the configurational
integral (i.e., the rotational entropy), and that (2) details of
shape specification do not qualitatively affect transla-
tional and orientational contributions to the configura-
tional integral. Hence, one may have some confidence
that simplifications introduced into the model to make it
analytically soluble do not qualitatively change its ther-
modynamic properties.

Interacting systems

Consider a cubical monomer with pseudo-radius r,. We de-
fine an interaction parameter W, = 4Wr?, representing the
potential of interaction of a single monomer interacting with

FIGURE 2 LogI' for formation of
dimers, tetramers, octamers, and hexadeci-
mers plotted as a function of the ratio of the
radius or pseudo-radius of monomer to the
halfwidth of a planar pore. The results of
hard particle (W,, = 0) calculations are
shown for the formation of compact n-mer
( ), rod-like n-mer (- - - - - ), and plate-
like n-mer (- - - -). (A) Results obtained with
orientations discretized as described in text.
(B) Results of Minton (1992), obtained for

logI’

all possible orientations.
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a single boundary surface. W,,, the general surface area de-
pendent well depth parameter used in the formulation of Egs.
5-7 and 11-13, is then given by W, = W,r,r./(4r3).

Soft repulsive interactions (W, > 0)

The value of log I" for formation of a rod-like tetramer in a
planar pore is plotted as a function of pore size and (repul-
sive) interaction potential in Fig. 3. It may be seen that as W,
increases, the dependence of I' on pore size varies as if the
pore were slightly shrinking in width. The analogy is exact
in the limit W,, — o, where the width of the pore is reduced
from 2r,, to 2(r,, — d). No significant effect is observed for
rifr, < 0.5.

Weakly attractive interactions (W, < 0)

The value of log I' for association of four cubical monomers
to form each of three differently shaped tetramers is plotted
as a function of pore size and the strength of particle-
boundary interaction in Fig. 4 for the planar pore model, Fig.
5 for the square pore model, and Fig. 6 for the cubical pore
model. The value of log I" for association of two cubical mono-
mers to form a rod-like dimer in a square pore is plotted as a
function of pore size and the particle-boundary interaction en-
ergy in Fig. 7. The following qualitative features are noted:

1. For a given oligomer shape, pore shape, pore size, and in-
teraction potential, I" increases substantially with extent of
oligomerization (value of r). A similar effect was noted for
pure hard particle confinement effects in Part L

Rodlike tetramer - planar pore

FIGURE 3 LogT for formation of a rod-like tetramer in a planar pore,
plotted as a function of the ratio of the pseudo-radius of cubical monomer
to the halfwidth of the pore, and the interaction potential W,. The range of
the interaction, d, is taken to be equal to 0.1 7, in this and subsequent
calculations.

Macromolecular Confinement, Adsorption, and Reactivity

1315

2. For a given oligomer shape and pore shape, I" generally in-
creases with increasing interaction potential and decreasing
pore size (increasing r/r,) until a pore becomes too small to
accomodate an oligomer of the specified shape. As the size
of the pore shrinks, at high interaction potentials I' may go
through a maximum and start to decrease with further pore
shrinkage. Unlike the case of repulsive interactions, I' can
become large even for large pore sizes (i.e., small values of
r,/r,) for relatively modest values of W,.

3. For each pore shape and set of coordinates {W,, r,/r,},
the value of I increases with oligomer shape in the order com-
pact tetramer < plate-like tetramer < rod-like tetramer.

4. For each oligomer shape and set of coordinates {W,, r,/r,},
the value of I increases with pore shape in the order planar
pore < square pore < cubical pore.

The effect of large increases in I' on the extent of
association within a pore is illustrated by the following cal-
culation. The composition of the bulk phase is selected to
contain 1% tetramer and 99% monomer at a concentration
of 1 g/l; this corresponds to an equilibrium constant
K% = 0.01 (I/g)®. The mass fraction of tetramer in a
“closed” planar pore, i.e., a pore in which the total w/v con-
centration of solute is held constant, and an “open” planar
pore, i.e., a pore in which solute may equilibrate with the
bulk, was calculated as a function of pore size and interaction
potential. The results are plotted in Fig. 8, and it may be seen
that in both types of pore, but particularly in the open pore,
changes in W, as small as 6-8 kzT may result in a 10- to
50-fold change in the fraction of solute in the pore that is
present as tetramer.

To ascertain the mechanism underlying the observed large
increases in I" (as much as several orders of magnitude), the
following calculation was carried out. An allowed configu-
rational state is defined as “bound” if at least one face of the
confined particle lies within distance d of a pore boundary,
and defined as “free” otherwise. (Forbidden states are neither
free nor bound.) Thus, Eq. 10b may be rewritten as

I,(m, 1) = I™*(m, 1) + I%°*%(m, 1), (22a)
where
(Fon — 1 —d Casel
15m, 1) = 4 Casell = o)
0 Case III
L0 Case IV
and
(d - exp(—W,,) Casel
L(m,t Case II
I=m, 1) = 3 I: Em, t; Case III * (22)
L0 Case IV

For the case of the planar pore, substitution of Eq. (22a) into
Eq. (17) yields

K, = K + Kb, (23a)
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planar pore

Compact tetramer

1 60|

Platelike tetramer
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Rodlike tetramer

1 60|

FIGURE 4 LogT for formation of compact, rod-like, and plate-like tetramers in a planar pore, plotted as a function of the ratio of the pseudo-radius of
cubical monomer to the halfwidth of the pore and the interaction potential. Note that range of r,/r, axis may differ for different tetramer shapes, because

different shapes have different exclusion limits.

where
K = I¥*(x, a) + IT™(x, b) + I'(x, c) (23b)
3 Tox
and
Koo — 15°(x, @) + I5°(x, b) + I8°"™(x, c) . 230)

37y

One can now calculate the relative w/v concentrations of free
monomer, bound monomer, free n-mer, and bound n-mer:

w{ree = Kfree W!)ulk w!:ound = K?ound w?ulk (24)

The mass fraction of each species is given by

[ =wiE o = whnd/z (25)

where

= (wiee + whound)
j

Consider a solution containing 1 g/l solute that self-
associates to form tetramer with an equilibrium constant
K, = 81/g. At this concentration, 50% by mass of the solute
is monomer and 50% is tetramer. Let this solution equilibrate
with a planar pore. The mass fraction of solute in each of the
states defined above within the pore, calculated as described
above, is plotted as a function of the ratio of monomer size
to pore dimension in Fig. 9 for three different interaction
potentials. In Fig. 10 the total w/v concentration of solute in
the pore is plotted as a function of pore size for each of the
three different interaction potentials. The major qualitative
features are as follows. The ratio of free tetramer to free
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square pore

Compact tetramer

Rodlike tetramer

TR
AN

\

160
n

Platelike tetramer w,/k'r

FIGURE 5 LogT for formation of compact, rod-like, and plate-like tetramers in a square pore.

monomer remains roughly equal (within a factor of 2) to the
bulk ratio of tetramer to monomer over the range of the
calculation (pore width = 2.5 monomer pseudo-diameter).
However, the ratio of bound tetramer to bound monomer is
strongly dependent on interaction potential and pore size; as
the interaction potential becomes more negative, bound tet-
ramer becomes the dominant solute species within the pore,
and does so at increasingly larger pore sizes (smaller values
of r,/r,). The results shown in Fig. 10 indicate that in the
absence of an attractive interaction between solute particles
and pore boundaries (W, = 0) solute is excluded as the pore
size decreases relative to the size of monomer; this result was
noted in Part I. However, when the interaction potential be-
comes sufficiently large (W, < ~—4 kyT) solute preferen-
tially distributes into the pore. The results shown in Fig. 9
reveal that this is due to adsorption of oligomeric solute onto
the pore boundaries.

The standard Helmholtz free energy of adsorption of the
ith species from the bulk phase is given by

AA? = —k, T In Kbowd (26)

The standard free energies of adsorption of four cubical
monomers and one rod-like tetramer in a planar pore are
plotted as functions of pore size and interaction potential in
Fig. 11. For a given combination of W, and r,/r,, the ad-
sorption free energy for tetramer is of the order of 1015 kT
more negative than that for four monomers. Because the en-
ergy changes of the two processes are identical, the differ-
ence is entirely attributable to a more favorable (negative)
value of —TAS for the tetramer than for the four monomers.

These observations may be rationalized in the context of
the thermodynamic cycle depicted schematically in Fig. 12.
When attractive interactions between particles in the pore
and the pore boundary surface are sufficient to result in a
significant extent of adsorption, adsorption of the oligomer
is substantially favored because of a smaller loss of entropy
associated with the adsorption of one tetramer relative to that
of four monomers. Both tetramerization of free monomers
and adsorption of monomers (that is, the upper and left-hand
equilibria of the cycle) require an “up-front” cost in negent-
ropic work of co-localization. As a result, less negentropic
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cubical pore

Compact tetramer

Rodlike tetramer

Platelike tetramer

FIGURE 6 LogT for formation of compact, rod-like, and plate-like tetramers in a cubical pore.

work of co-localization is required to complete the formation
of bound tetramers, either by tetramerization of bound mono-
mers or by the adsorption of free tetramers (the lower and
right-hand equilibria of the cycle). A sufficiently attractive
potential of interaction between particles in solution and the
pore boundary provides the energetic means for overcoming
the initial entropy barrier to adsorption.

It was observed that enhancement of oligomerization is
increased as one progresses from the planar to the square and
again to the cubical pore models. This observation may be
understood as reflecting the added stability of particles that
can simultaneously engage in interactions with two bound-
aries of a square pore (i.e., lying near the corners of the
square) and with three boundaries of a cubical pore (lying
near the corners of the cube). If these maximally interacting
states dominate the thermodynamics of association in their
respective pores, log I" should roughly scale as the negative
of the interaction energy of the maximally interacting state,
proportional to the interacting surface area of that state given
in Table 1. Comparison of the numbers in this table with the

Rodlike dimer - square pore

160

FIGURE 7 Log I for formation of a rod-like dimer in a square pore. Axes
as in Figs. 4-6.
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FIGURE 8 Mass fraction of rod-like
tetramer in a closed planar pore (left)
and in an open planar pore (right),
plotted as a function of pore size and
interaction potential.

(o10d pesop) "}
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0.4

mass fraction

0.2

b1
0.0 ' ' =t

FIGURE 9 Composition of solute
within a planar pore in equilibrium
with bulk solution, plotted as a func-
tion of r/r, for W, = 0 (left), —4kgT
(middle) and —8kgT (right). f1, f4,
b1, and b4 denote free monomer, free
tetramer, bound monomer, and bound
tetramer, respectively.

01 02 03
r/r,

Wiot(in) / wigt(out)

02
"1/p

FIGURE 10 Ratio of total solute concentration inside a planar pore to that
outside the pore, calculated for W, = 0 (A), —4k,T (B), and —8k,T (C),
as a function of r,/r,.

functions plotted in Figs. 46 indicate that the relative sur-
face areas of maximally interacting states correlate well with
the relative magnitudes of log I" for formation of differently
shaped oligomers in differently shaped pores.

0.0

0.4

An interesting prediction arising from this analysis is that
as the pore shrinks toward the size of the monomer, the en-
tropy of the free monomer will decrease and the transition
between free and bound states will be dominated more by
energetic than negentropic contributions to the free energy.
For example, because one tetrameric cube has less maxi-
mally interacting surface in a square pore than have four
monomeric cubes, one might expect that as energetic
changes become larger and begin to dominate the overall free
energy change for formation of compact tetramers in a square
pore, log I" should go through a maximum and start to de-
crease. The results plotted in Fig. 13 reveal that this is indeed
the case.

ISOMERIZATION REACTION

Consider the isomerization modeled by the following con-
stant volume reaction:

PP(1 X 1 X 1) = PP(f%* X f~13 X f~15)

The particle on the left-hand side is a cube, and the par-
ticle on the right-hand side is a parallelopiped of square
cross section with an axial ratio of f; it is rod-like if f >
1 and plate-like if f < 1. Let the isomerization in the bulk
(unconfined) phase be characterized by an equilibrium
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FIGURE 11 Calculated standard
free energy changes associated with
the adsorption of four molecules of
monomer (left) and one molecule of
rod-like tetramer in a planar pore, plot-
ted as functions of the interaction po-
tential and size of the pore relative to
the size of monomer.
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FIGURE 12 Thermodynamic cycle of equilibria between free monomer
(upper left), free tetramer (upper right), bound monomer (lower left), and
bound tetramer (lower right) in a planar pore. Dashed lines represent the
range of the interaction.

TABLE 1 Maximum areas of particle surface interacting with
pore boundaries

Planar pore Square pore Cubical Pore
Cube
1X1x1) 1 2 3
Cube
(42 X 4B x4'P) 4B =252 2x4P =504 3xX4P=1756
Rod
@4x1x1) 4 4+4=38 4+4+1=9
Plate
2x2x1) 4 4+2=6 4+2+2=8

constant K2(f) and the standard free energy change

AAYK(f) = — RT In K2%(f). Then it follows from Eq.
1 that

I(f) = K (f)/K () = K(F)/K(1D)  (27)

where K(f) is the partition coefficient for the parallel-
opiped of axial ratio f and

AARY(f) = AAY(f) — RT InT(f) (28)
In Fig. 14 the dependence of AAPT(f) — AAZ¥(f) upon

is0 iso
f and pore size in a planar pore is plotted for the case of
no interaction and moderate interaction. In the absence of
interaction between the particle and the walls of the pore,

no significant effect of confinement upon isomerization
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FIGURE 13 LogT for formation of a compact (cubic) tetramer in a
square pore, plotted as a function of W, and r,/r,. These results represent
the results of calculations identical to those shown in Fig. 5 extended to
higher attractive interaction energy.

is observed for r,/r, = 0.4. However, if there exists an
attractive potential of 8k,T per unit “contact” area, then
conformations that maximize contact area are signifi-
cantly favored: in the case of the planar pore, the equi-
librium for formation of the plate-like PP is most favored,
even at very large pore sizes. Note that at any pore size
AAPTe(f) — AAK(f) is maximal at f = 1 (the cubical
conformation), where contact area is minimized. If there
existed a repulsive potential of interaction between the
surface of the particle and the pore wall, then AAP®
(f) — AAX%(f) would be minimized at f = 1.

At azero-order level of approximation, one might consider
the various conformations of the PP considered above to
represent different possible conformations of a protein.
Many globular proteins have compact quasi-spherical native
conformations in solution, in which the surface area per unit
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W, = -8 kT

FIGURE 14 Difference between the
free energy of isomerization in the planar
pore and in the bulk, plotted as a function
of the shape parameter fand the size of the
pore relative to the size of the compact
cube (f = 1). (left panel) W, = 0; (right
panel) W, = —8k,T.
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volume is nearly minimized (Richards and Lim, 1993). This
compact, native conformation is generally regarded as being
associated with a global free energy minimum. Thus, dis-
tortion of the conformation in the bulk phase toward increas-
ingly anisometric forms would be expected to result in an
increase in the free energy of the protein relative to that of
the global minimum, but local free energy minima are likely
to exist (Frauenfelder et al., 1991), as depicted schematically
in Fig. 15. The calculation presented above suggests that to

1 T T T
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FIGURE 15 Schematic depiction of the free energy of conformational
change of a protein as a function of axial ratio in the absence of surface
interaction (top) and in the presence of attractive surface interaction (bot-
tom). The difference between the two free energy plots, plotted in the central
panel, has a functional form chosen to resemble qualitatively the difference
function plotted in the right panel of Fig. 14.

the extent that nonspecific attractive forces exist between the
boundaries of a pore and the surface of a protein, the free
energy of a protein in the pore will contain an extra contri-
bution, equal to —RTInT'(f) in Eq. 28, that decreases
roughly monotonically with increasing anisometricity of the
protein, i.e, with increasing contact surface area. Thus, the
total free energy of the confined protein may have global or
local minima at conformations other than the maximally
compact conformation corresponding to the native state in
bulk solution; this possibility is depicted schematically in
Fig. 15.

POSSIBLE RELEVANCE TO CELL BIOLOGY

The results reported here indicate that weak, nonspecific at-
tractive potentials acting between the boundaries of a con-
fining volume element and confined macromolecules can
result in qualitative enhancement of the extent of association
of the confined macromolecules as well as possible alteration
of the minimum energy conformation. The attractive poten-
tials at which substantial effects are observed are as small as
4-8 kyT (2.5-5 kcal/mol at room temperature), i.e., of the
order of magnitude of hydrogen bonds, hydrophobic inter-
actions, or simple attraction between charged or partially
charged groups in aqueous solution (Némethy et al., 1963;
Rose and Wolfenden, 1993).

We have experimentally observed presumably nonspecific
associations between unrelated globular proteins and fibrous
actin in solutions of moderate ionic strength (Lakatos and
Minton, 1990). These associations are characterized by
standard free energy changes of the order of —10 RT per mole
of globular protein, where R = k; X Avogadro’s number.
Although the models used here are too simple to be compared
quantitatively with experiment, the results shown in Fig. 11
suggest that free energy changes of this magnitude could
reflect substantially more negative energies or enthalpies of
interaction, a hypothesis that may of course be tested ex-
perimentally. If this proves to be the case, one might expect
the nonspecific association of globular proteins with ex-
tended substrates such as F-actin to be accompanied by ex-
tensive self- or heteroassociation of adsorbed protein.
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To the extent that adsorption does not intrinsically interfere
with association of a particular pair of soluble protein species
(by, for example, requiring the participation of a particular sur-
face region of the protein that would otherwise be involved in
the formation of a heterocomplex of soluble proteins), adsorption
would be expected to substantially enhance any intrinsic pro-
pensity for self- or heteroassociation of the globular species that
may exist in the absence of the adsorbing substrate. The results
presented here thus tend to support the view of eukaryotic cy-
toplasm proposed by Clegg (1984), according to which soluble
proteins are in the main present as complexes adsorbed onto
fibrous structural elements such as actin fibers. Because adsorp-
tion is expected to be (or perhaps defined to be) largely non-
specific, the composition of adsorbed protein complexes would
reflect the intrinsic relative affinity of each species of soluble
protein for itself and each of the other species present, differences
in the adsorption tendency of each species, and the total con-
centration of each species in the cytoplasm.

I thank Dr. William Gelbart, UCLA, for critically reviewing an early draft
of this report.
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